Comparative study of myoelectric pattern recognition using SVM and PNN classifiers based on wavelet analysis

نویسندگان

  • Firas AlOmari
  • Guohai Liu
چکیده

The choice of a proper wavelet family with a fast and robust classifier is an important step in the construction of a myoelectric control pattern recognition system for a prosthetic hand. In this study, five hand motions were classified by using six wavelet functions extracted features from sEMG signals. The selected wavelet families that were used to decompose the recorded sEMG signals are Biorthogonal (bior). Coiflet (coif), Daubechies (db), and Symmlet (sym). Two different recognition methods were employed for classification procedure: support vector machine (SVM), probabilistic regression neural network (PNN). The results of our experiment demonstrate that the use of wavelet families at a high decomposition level increases the recognition rate of hand motions. The highest achieved classification rate was 96%, by using the PNN classifier based on coif4 at the sixth decomposition level.  2015 Trade Science Inc. INDIA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods

Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...

متن کامل

A Comparative Study of SVM Classifiers and Artificial Neural Networks Application for Rolling Element Bearing Fault Diagnosis using Wavelet Transform Preprocessing

Effectiveness of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) classifiers for fault diagnosis of rolling element bearings are presented in this paper. The characteristic features of vibration signals of rotating driveline that was run in its normal condition and with faults introduced were used as input to ANN and SVM classifiers. Simple statistical features such as standa...

متن کامل

Wavelet transform based power quality events classification using artificial neural network and SVM

This paper demonstrates classification of PQ events utilizing wavelet transform (WT) energy features by artificial neural network (ANN) and SVM classifiers. The proposed scheme utilizes wavelet based feature extraction to be used for the artificial neural networks in the classification. Six different PQ events are considered in this study. Three types of neural network classifiers such as feed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015